Skip to content

Cut Depths

3D puzzles

Tetrahedron

The tetrahedron is self-dual, so every vertex-turning tetrahedron has an identical facet-turning tetrahedron (and vice versa).

Facet-turning cut depths

Assume each facet is at distance \(1\) from the origin. Then each vertex is at distance \(-3\) along the same vector. Thus each cut is in the range \((-3, 1)\).

Common Name Technical Name Cut distance Piece types
Halpern-Meier Tetrahedron 4-Simplex C \(\left( -\frac{1}{3}, 1 \right)\) 1g + 2g + 3g
Tetraminx 4-Simplex B \(-\frac{1}{3}\) 2g + 3g
4-Simplex A \(\left( -1, -\frac{1}{3} \right)\) 2g + 3g + 4g
2-Layer Pyraminx \(\left( -3, -1 \right]\) 3g + 4g
Piece types
Name Grips
Core 0
Center 1
Edge 2
Corner 3
Anticore 4

Vertex-turning cut depths

Each facet-turning cut distance \(d_v\) is equivalent to the facet-turning cut_depth \(d_f = -d_v\). Thus each each cut is in the range \((-1, 3)\).

Common Name Technical Name Cut distance Piece types
2-Layer Pyraminx \(\left[ 1, 3 \right)\) 0g + 1g
4-Simplex A \(\left( \frac{1}{3}, 1 \right)\) 0g + 1g + 2g
Tetraminx 4-Simplex B \(\frac{1}{3}\) 1g + 2g
Halpern-Meier Tetrahedron 4-Simplex C \(\left( -1, \frac{1}{3} \right)\) 1g + 2g + 3g

4-Simplex Pyraminx

The 3-Layer 4-Simplex Pyraminx is a combination of the 2-Layer 4-Simplex Pyraminx with 4-Simplex A.

Dodecahedron

Facet-turning cut depths

Assume each facet is at distance \(1\) from the origin. Thus each cut is in the range \([0, 1)\).

Note that \(\phi = \frac{1 + \sqrt 5}{2}\).

Name Cut distance Piece types
Megaminx \(\left[ \frac{1}{\phi}, 1 \right)\) 1g, 2g, 3g
Megaminx Crystal \(\left( \frac{1}{\sqrt 5}, \frac{1}{\phi} \right)\) 1g, 2g, 3g, 4g
Pyraminx Crystal \(\frac{1}{\sqrt 5}\) 3g, 4g
Litestarminx, Curvy Starminx \(\left( \frac{2}{\phi} - 1, \frac{1}{\sqrt 5} \right)\) 3g, 4g, 5g, 6g (PU center)
Starminx \(\frac{2}{\phi} - 1\) 4g, 5g, 6g (PU center)
Master Pentultimate \(\left( 0, \frac{2}{\phi} - 1 \right)\) 4g, 5g, 6g (PU center), 6g (PU corner)
Pentultimate \(0\) 6g (PU center), 6g (PU corner)
Piece types
Name Grips
Core 0
Megaminx center 1
Megaminx edge 2
Megaminx corner 3
Crystal edge 4 (F U R L)
Crystal petal 5 (F U R L DR)
Pentultimate center 6 (F U R L DR DL)
Pentultimate corner 6 (F U R L DR BR)

Icosahedron

Facet-turning cut depths

Assume each facet is at distance \(1\) from the origin. Thus each cut is in the range \([0, 1)\).

Note that \(\phi = \dfrac{1 + \sqrt 5}{2}\).

Name Cut distance Piece types
Radiolarian 1.5 \(\left( \frac{\sqrt{5}}{3}, 1 \right)\) 1g, 2g, 3g, 4g (Wing), 5g (Corner)
Radiolarian 2 \(\frac{\sqrt{5}}{3}\) 2g, 3g, 4g (Wing), 5g (Corner)
Radiolarian 3 \(\left( \frac{1}{\phi}, \frac{\sqrt{5}}{3} \right)\) 2g, 3g, 4g (Wing), 4g (Center), 5g (Corner)
Radiolarian 4 \(\frac{1}{\phi}\) 3g, 4g (Wing), 4g (Center), 5g (Corner)
Radiolarian 4.5 \(\left( \frac{4+\sqrt{5}}{11}, \frac{1}{\phi} \right)\) 3g, 4g (Wing), 4g (Center), 5g (Corner), 5g (Petal), 6g (Edge)
Radiolarian 5 \(\frac{4+\sqrt{5}}{11} = \frac{\phi^2}{2+\phi^2}\) 4g (Wing), 4g (Center), 5g (Corner), 5g (Petal), 6g (Edge)
Radiolarian 6 \(\left( \frac{4+\sqrt{5}}{11}, \frac{1}{\phi} \right)\) 4g (Wing), 4g (Center), 5g (Corner), 5g (Petal), 6g (Edge), 6g (Petal)
Radiolarian 7 \(5 - 2\sqrt(5)\) 4g (Center), 5g (Corner), 5g (Petal), 6g (Edge), 6g (Petal)
Radiolarian 8 \(\left[ \frac{3-\sqrt{5}}{2}, 5 - 2\sqrt{5} \right)\) 4g (Center), 5g (Corner), 5g (Petal), 6g (Edge), 6g (Petal), 7g
Radiolarian 8.5 \(\left( \frac{1}{3}, \frac{3-\sqrt{5}}{2} \right)\) 4g (Center), 5g (Corner), 5g (Petal), 6g (Edge), 6g (Petal), 7g, 8g (Edge)
Radiolarian 9 \(\frac{1}{3}\) 5g (Corner), 6g (Petal), 7g, 8g (Edge)
Radiolarian 10 \(\left( \frac{1}{\phi^3}, \frac{1}{3} \right)\) 6g (Petal), 7g, 8g (Edge), 8g (Kite), 9g (Petal), 10g (Center)
Radiolarian 11 \(\frac{1}{\phi^3} = \sqrt{5}-2\) 7g, 8g (Edge), 8g (Kite), 9g (Petal), 10g (Center)
Radiolarian 12 \(\left( 1-\frac{2}{\sqrt{5}}, \frac{1}{\phi^3} \right)\) 7g, 8g (Edge), 8g (Kite), 9g (Petal), 9g (Wing), 10g (Center), 10g (Corner)
Radiolarian 13 \(1-\frac{2}{\sqrt{5}}\) 8g (Edge), 8g (Kite), 9g (Petal), 9g (Wing), 10g (Center), 10g (Corner)
Radiolarian 14 \(\left( 0, 1-\frac{2}{\sqrt{5}} \right)\) 8g (Edge), 8g (Kite), 9g (Petal), 9g (Wing), 10g (Center), 10g (Corner), 10g (Wing)
Radiolarian 15 \(0\) 10g (Center), 10g (Corner), 10g (Wing)
Piece types
Name Grips
Core 0
Stationary Center 1
Shallow Edge 2
Shallow Corner 5
Shallow Petal 3
Shallow Corner Petal 4
Shallow Moving Center 4
Intermediate Edge 6
Shallow Center Adjacent 5
Shallow Corner Adjacent 6
Edge Wing 7
Deep Edge 8
Deep Center 10
Deep Center Adjacent 9
Kite 8
Deep Corner 10
Deep Edge Wing 9
Deep Corner Petal 10

4D puzzles

4-Simplex

The 4-simplex is self-dual, so every vertex-turning 4-simplex has an identical facet-turning 4-simplex (and vice versa).

Facet-turning cut depths

Assume each facet is at distance \(1\) from the origin. Then each vertex is at distance \(-4\) along the same vector. Thus each cut is in the range \((-4, 1)\).

Name Cut distance Piece types
4-Simplex D \(\left( -\frac{1}{4}, 1 \right)\) 1g + 2g + 3g + 4g
4-Simplex C \(-\frac{1}{4}\) 2g + 3g + 4g
4-Simplex B \(\left( -\frac{2}{3}, -\frac{1}{4} \right)\) 2g + 3g + 4g + 5g
4-Simplex A \(\left( -\frac{3}{2}, -\frac{2}{3} \right]\) 3g + 4g + 5g
2-Layer 4-Simplex Pyraminx \(\left( -4, -\frac{3}{2} \right]\) 4g + 5g
Piece types
Name Grips
Core 0
Center 1
Ridge 2
Edge 3
Corner 4
Anticore 5

Vertex-turning cut depths

Each facet-turning cut distance \(d_v\) is equivalent to the facet-turning cut_depth \(d_f = -d_v\). Thus each each cut is in the range \((-1, 4)\).

Name Cut distance Piece types
2-Layer 4-Simplex Pyraminx \(\left[ \frac{3}{2}, 4 \right)\) 0g + 1g
4-Simplex A \(\left[ \frac{2}{3}, \frac{3}{2} \right)\) 0g + 1g + 2g
4-Simplex B \(\left( \frac{1}{4}, \frac{2}{3} \right)\) 0g + 1g + 2g + 3g
4-Simplex C \(\frac{1}{4}\) 1g + 2g + 3g
4-Simplex D \(\left( -1, \frac{1}{4} \right)\) 1g + 2g + 3g + 4g

4-Simplex Pyraminx

The 3-Layer 4-Simplex Pyraminx is a combination of the 2-Layer 4-Simplex Pyraminx with 4-Simplex A.